\checkmark No, sqrt() isn't what the Roman legions paraded on their standards. (That was SPQR, which stands for Senatus Populus Que Romanus, the Senate, and People of Rome.)

\checkmark A reader once wrote me e-mail asking whether the C language had some equivalent of the mathematical i dingus, used to represent the imaginary number $\sqrt{ }-1$, or the square root of "negative one." Because I don't know everything, I had to say that I don't know. Some mathematical C language library somewhere may deal with i. But, as far as any other workaround is concerned, I have no idea - though I believe it can be worked into the C++ programming language. (But I don't do C++, so I can't confirm it.)

Strange Math? You Got It!

Most C language libraries are just bursting with math functions. Lots of them. I have listed some of the more common ones in Table 25-1, along with their formats. Pretty much all of them want a double or float value, which makes sense when you figure that if math had no decimals, more of us would enjoy it.

Table 25-1	Weirdo Math Functions You Never Use			
Function	What It Computes	Format	Include	Library
abs	Absolute value	$\mathrm{a}=\mathrm{abs}(\mathrm{b})$	STDLIB.H	standard
acos	Arc cosine	$\mathrm{x}=\mathrm{acos}(\mathrm{y})$	MATH.H	libm
asin	Arc sine	$\mathrm{x}=\mathrm{asin}(\mathrm{y})$	MATH.H	libm
atan	Arc tangent	$\mathrm{x}=\operatorname{atan}(\mathrm{y})$	MATH.H	libm
\cos	Cosine	$\mathrm{x}=\cos (\mathrm{y})$	MATH.H	libm
\exp	Exponential	$\mathrm{x}=\exp (\mathrm{y})$	MATH.H	libm
\log	Natural logarithm	$\mathrm{x}=\log (\mathrm{y})$	MATH.H	libm
$\log 10$	Base 10 logarithm	$\mathrm{x}=\log 10(\mathrm{y})$	MATH.H	libm
\sin	Sine	$\mathrm{x}=\sin (\mathrm{y})$	MATH.H	libm
\tan	Tangent	$\mathrm{x}=\tan (\mathrm{y})$	MATH.H	libm

\checkmark In Table 25-1, variables a, b, and c denote integer values. Variables x, y, and z are doubles.

- The 1 i bm library is needed only for compiling programs under a Unixlike operating system. Refer to the earlier sidebar "Gotta link in that math library!"

